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The highly toxic nature of cyanide (CN) and its derivatives has been recognized for many
years. Not surprisingly, attempts to identify an antidote to counter CN toxicity also have a long
history. One strategy to counter cyanide toxicity is to administer compounds which form
methemoglobin (MHb), a molecule for which cyanide has a greater affinity than hemoglobin.
Although MHDb cannot transport oxygen, properly monitored induced (i.e., acquired)
methemoglobinemia can be effective in mitigating and/or reversing CN effects (ATSDR, 1993).

The successful application of MHb formers such as nitrites and methylene blue against
CN actually predates the identification of MHb as a common mechanism of action. More than a
century ago, Pedigo demonstrated the efficacy of amyl nitrite against CN poisoning in dogs
(Pedigo, 1888). Mladoveanu and Gheorghiu (1929) subsequently reported that dogs recovered
from otherwise lethal levels of CN when sodium nitrite was administered soon after CN
exposure, and Geiger (1932) presented important evidence for clinical efficacy of methylene blue
against CN poisoning (see also Hanzlik and Richardson, 1934). It was proposed by Hug
(1933a,b) and Wendel (1933) that the antagonistic action of these substances against CN was
directly linked to their demonstrated ability to form MHb in the blood in vivo (Combemale,
1891; Haldane et al., 1897). Extensive experimental and clinical corroboration and elaboration
of the nitrite data have resulted in the long-standing inclusion of both amyl nitrite and sodium
nitrite in the Eli Lilly Cyanide Antidote Package. Chen and colleagues demonstrated enhanced
effectiveness of MHb formers (e.g., amyl nitrite, sodium nitrite) when combined with a sulfur
donor such as sodium thiosulfate (Chen et al., 1934; Chen and Rose, 1952; see also Baskin et al.,
1992). With respect to methylene blue, further work indicates that although a (weak) MHb
former (Nadler et al., 1934; Marrs et al., 1989), the pharmacological characteristics of methylene
blue render it more effective as a treatment to reduce dangerously high levels of methemoglobin
(Wendel, 1939; Kiese er al., 1972; Hall et al., 1986; Smith, 1991).

CN has been used as an offensive weapon during wartime, and, largely due to its rapid
toxicity onset, its cost and relative ease to manufacture, and the varied methods of its application,
CN remains a viable threat as a chemical warfare agent (Compton, 1987; United States Senate
Hearings, 1989; McKay and Vogel, 1992). Attempts in the United States to systematically
exploit the MHb-forming properties of compounds extend back to WWIL. In 1944, Vandenbelt
et al. identified a phenone, p-aminopropiophenone (PAPP), as a potent, relatively nontoxic MHb
former in dogs, superior to nitrites and other MHb formers with regard to MHb formation. This
finding was followed by a succession of reports from Bodansky and colleagues who exploited
the MHb-forming properties of PAPP, demonstrating impressive protection in dogs and rodents
against CN toxicity (Jandorf and Bodansky, 1946; Tepperman et al., 1946; Bodansky and
Guttman, 1947). Subsequent research highlighted the MHb-forming ability and low toxicity of
PAPP in human volunteers (Beutler and Mikus, 1961; Paulet et al., 1963), and provided
noteworthy evidence that PAPP may have practical medical and/or military applications
(Bodansky and Hendley, 1946; Tepperman et al., 1946; Beutler and Mikus, 1961; see also
Baskin and Fricke, 1992).

More recently, two phenones structurally related to PAPP, viz. p-aminoheptanoylphenone
(PAHP) and p-aminooctanoylphenone (PAOP), have been identified as potentially useful MHb-
forming anti-CN agents (Scharf ez al., 1992; Rockwood et al., 1994). This work emerges against
a background in which limitations and drawbacks of existing MHb formers used to counter CN
toxicity (e.g., nitrites) are acknowledged and highlighted (Hanzlik and Richardson, 1934;
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Frankenberg, 1982; van Heijst ef al., 1987; van Heijst and Meredith, 1990). For example, both
amy! nitrite and sodium nitrite form MHb in experimental animals (Chen ef al., 1933; Chen and
Rose, 1952), but neither shows impressive MHb formation in humans (Paulet, 1954; Bastian and
Mercker, 1959; Kiese and Weger, 1969). In addition, side-effects in humans following the
administration of amy! nitrite as well as sodium nitrite (e.g., vasomotor and cardiac
perturbations, hypotension) have been reported (Paulet, 1954; Kiese and Weger, 1969;
Frankenberg and Sorbo, 1975; Frankenberg, 1982). Therefore, to provide an initial evaluation of
other MHb formers which have shown efficacy against CN, the current focus is to profile and
compare in the mouse hematologic changes produced by PAPP, PAHP and PAOP. Although
some information describing MHb patterns in the mouse after the administration of PAPP has
been reported (e.g., Abbanat and Smith, 1964; Smith er al., 1967), a more complete evaluation of
other hematologic parameters following PAPP has, to date, not been made available.
Furthermore, since only scant information on PAHP and PAOP has been published (Bright and
Marrs, 1983; Bright, 1987; D'Mello, 1987; Scharf er al., 1992), the present study will allow for
an extensive comparison among PAPP, PAHP and PAOP along multiple hematologic
parameters. It is anticipated that this comparison will assist in the identification of those
characteristics which render certain MHb formers more efficacious than others against both
lethal and sublethal exposure to CN or CN-like compounds.

METHODS

Subjects

Male CD-1 Swiss albino mice (N=306; mean weight=27.3 + 0.2 g) served as subjects,
and were maintained under an AAAL AC-accredited animal care and use program. Prior to
experimentation, animals were group-housed in polycarbonate cages (N < 10/cage), in a
temperature- (22° + 2°C) and humidity-controlled (40-70%) housing facility with a 12-hr
light/dark lighting cycle with no twilight (lights on at 0600 hr). Food and water were available
ad libitum until testing commenced. During testing (3 hr maximum), animals did not have
access to food or water.

Sampling Procedure

Each subject was removed from its home cage and placed individually into a Plexiglas
and wood restraining device, with its tail remaining exposed. This technique allowed for rapid
and accurate tail vein sampling and required minimal animal handling. For each sample,
approximately 40-50 pl of blood was collected from the tip of the tail into a heparinized capillary
tube, and then promptly introduced into an OSM3 Hemoximeter (Radiometer America, Inc.) for
analysis. Blood samples were obtained at -2, +2, +15, +30, +60, +120 and + 180 min relative to
injection, as described below. The first sample provided baseline information. Subsequent time
points were selected to encompass the anticipated time of action of the test compounds, and to
provide an adequate number of intermediate measurements for ascertaining temporal patterns of
hematologic changes. Between samples, animals were placed individually into a polycarbonate
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cage lined with woodchip bedding.

Testing

Each animal was assigned randomly to a treatment group as detailed in Table 1.
Hematologic parameters were measured following a single intramuscular (im) or intraperitoneal
(ip) injection of p-aminopropiophenone (PAPP), p-aminoheptanoylphenone (PAHP), p-
aminooctanoylphenone (PAOP), or appropriate vehicle control (see Figure 1). Drug doses were
selected on the basis of compound efficacy against a2 MLD CN challenge and/or preliminary
behavioral data (Rockwood et al., 1992; Scharf et al., 1992; Rockwood, Murrow, Preville,
Baskin and Romano, unpublished observations). The prototypic MHb former sodium nitrite
(NaNO,; 100 mg/kg) served as the positive control, and it or its vehicle (normal saline) was
administered either im or ip. Injections were administered in a volume of 0.5 ml/kg (im) or 1.0
ml/kg (ip). Group sample size ranged from 5-15, with most groups comprised of 8-10 mice.
Restricted drug availability limited the sample size of the smallest groups. In addition, because
of the lack of hematologic effects of PAOP administered im, only 2-4 animals were tested in
these groups. The effects of these compounds on the following hematologic parameters are
reported: methemoglobin (MHb), sulfhemoglobin (SHb)', carboxyhemoglobin (HbCO),
oxyhemoglobin (HbO,), oxygen capacity (O,CAP), oxygen content (O,CT), reduced hemoglobin
(RHb), and oxygen saturation (SAT). MHb, HbCO, HbO,, RHb and SAT are expressed as % of
total hemoglobin; SHb is expressed as a concentration, mmol/L; and O,CAP and O,CT are
expressed as content of oxygen bound to hemoglobin, in volume %.

Data Analyses

For each compound and its respective vehicle control, a repeated measures analysis of
variance (ANOVA) was performed, with Time as the repeated measure (SAS Institute, Cary,
NC). Simple main effects analyses and/or Newman-Keuls tests were conducted as appropriate.
All tests were considered statistically significant at the P < 0.05 level.

Based on OSM3 methodology using absorbances, SHb measures are reported in mmol/L. It should be cautioned
that because a standard reference method for SHb determination is not currently available, these units are relative,
and may not actually reflect exact SHb levels. However, the accuracy of the patterns of SHb in the samples
measured by the OSM3 remains intact.




RESULTS

MHb formation following phenone administration was accompanied by a proportional
increase in SHb and decreases in HbO,, O,CAP, O,CT, RHb and SAT. These effects were not
uniform across phenones, but were compound-, route-, dose- and/or time-dependent. In addition,
no significant HbCO was detected in any of the animals in this study.

The hematologic effects of PAHP and PAOP were larger when administered ip versus
im. However, this pattern was not evident with either PAPP or NaNO,. Furthermore, by the end
of the 3-hr test period, the hematologic effects produced by PAHP and PAOP were often still
present, while those produced by PAPP and NaNO, were no longer evident. A summary of
effects as a function of drug and route is presented in Table 2. Details of the effects of these
compounds on the various hematologic parameters measured are described in the text below
and/or depicted in Figures 2-13. Note that because of generally similar hematologic patterns,
PAPP and NaNO, data are reported (but not pooled) together, and PAHP and PAOP data are
reported (but not pooled) together. Furthermore, since either small or no effects were observed
with O,CAP and HbCO, respectively, no additional results for these parameters are provided in
the text. However, these data are presented in Figures 14-17. Finally, unless otherwise noted,
peak drug effects occurred 15-30 min post-injection.

PAPP and NaNO,
MHb and SHb. For MHb, peak values ranged from 16-53% for PAPP and were

observed at 33% for NaNO,. For SHb, peak values ranged from 0.042-0.106 mmol/L for PAPP
and were observed at 0.067 mmol/L for NaNO, (see Figures 2 and 3).

HbO, andO,CT. Lowest HbO, levels ranged from 6-18% for PAPP and were observed
at 20% for NaNO,. For O,CT, lowest levels ranged from 1.0-3.6 volume % for PAPP and were
observed at 3.5 volume % for NaNO, (see Figures 4 and 5).

RHb and SAT. Lowest RHb levels occurred at 15-60 min post-injection, with lowest
levels ranging from 42-60% for PAPP, and were observed at 42% for NaNO,. For SAT, lowest
levels occurred 2-30 min post-injection, with lowest levels ranging from 10-15% for PAPP and
were observed at 25% for NaNO, (see Figures 6 and 7).

PAHP and PAOP

MHb and SHb. MHb and SHb levels for both PAHP and PAOP were significantly
elevated in ip-treated animals. In im-treated animals, only PAHP produced a significant
elevation. In those groups exhibiting elevated MHD levels, peak values were observed 30-60 min
post-injection. For PAHP, peak values ranged from 3-8% for im-treated animals, whereas for ip-
treated animals, peak values ranged from 34-55%. For PAOP, peak values ranged from 25-42%
in ip-treated animals. In those groups exhibiting elevated SHb levels, peak values were observed
at 30-120 min post-injection. For PAHP, peak values ranged from 0.016-0.020 mmol/L in im-
treated animals, and 0.048-0.089 mmol/L in ip-treated animals. For PAOP, peak values in ip-
treated animals ranged from .055-.074 mmol/L (see Figures 8 and 9).

HbO,and O,CT. HbO, and O,CT levels were significantly reduced in ip- but not im-




treated animals. For PAHP, lowest levels were observed at 30-120 min post-injection, whereas
for PAOP, lowest levels were observed at 15-60 min post-injection. For HbO,, lowest levels
ranged from 5-11% for PAHP, and 9-15% for PAOP. For O,CT, lowest levels ranged from 1.1-
2.1 volume % for PAHP, and 1.9-3.1 volume for PAOP (see Figures 10 and 11).

RHb and SAT. RHb and SAT levels were significantly reduced in ip- but not im-treated
animals. For RHb, lowest levels were observed at 30-60 min post-injection, whereas for SAT,
lowest levels were observed at 30-180 min and 15-30 min post-injection for PAHP and PAOP,
respectively. For RHb, lowest levels ranged from 39-55 % for PAHP, and 47-60 % for PAOP.
For SAT, lowest levels ranged from 12-17% for PAHP, and 13-19% for PAOP (see Figures 12
and 13).

DISCUSSION

The MHb-forming phenones PAPP, PAHP, and PAOP each provide significant dose-
dependent protection in mice against a 2 X MLD CN challenge (Scharf e al., 1992; unpublished
observations). This pattern of protection against CN, combined with the pattern of hematologic
changes observed in the present study, strongly suggests that elevated MHb levels are required
for these compounds to show efficacy against CN. This notion is further supported by the
observation that PAOP produces MHb and affords significant protection against CN when
administered ip (Scharf er al., 1992). However, when administered im, PAOP neither initiates
MHb formation nor provides protection against a2 X MLD CN challenge (Rockwood, Murrow,
Preville and Nealley, unpublished observations; present study). Although these findings are
strongly suggestive, our data cannot eliminate the possibility that the phenones tested in the
present study are efficacious against CN in ways other than, or in addition to, MHb formation.
That is, these compounds may produce concurrent or partially overlapping events, with MHb the
most easily identified/quantified. Hence, MHb formation is generally regarded as the most likely
candidate for mechanism of action of these phenones against CN. For example, in addition to
being a MHb former, PAPP is also a vasodilator. It is therefore feasible that enhanced blood
flow may allow for endogenous mechanisms to more readily metabolize and/or reduce the
concentration of CN, with the result being demonstrable efficacy of MHb formers against CN
(Holmes and Way, 1982; Way, 1984; Baskin and Fricke, 1992; Scharf et al., 1992).

It is not surprising that certain relationships appear among the various hematologic
parameters measured in this study. Those parameters which measure red blood cell oxidation of
oxygen-carrying hemoglobin, such as MHb and SHb, were elevated by the phenones tested.
Conversely, levels of those parameters which measured the concomitant changes in oxygen-
carrying capacity, such as HbO,, O,CAP, O,CT, RHb and SAT, decreased. Measured levels of
species such as HbCO, which were not directly related to the effects of these particular drugs, did
not change significantly.

The observation of significant and time-related elevated SHb levels which paralleled
MHD changes deserves some additional consideration. It is generally accepted that SHb
formation, unlike MHb formation, is permanent until normal red cell replacement (Beutler, 1977;




Smith, 1991). Patterns of SHb changes in the current study suggest temporary changes which
diminish as a function of time, dose, drug and route of administration, a finding generally similar
to that described in other reports (Nomura, 1977; Martin et al., in press). It is likely that the
general term SHb actually describes several species, and that our SHb measure describes a
combination, including one or more which are reversible.

Interestingly, Smith (1991) considers the occurrence of temporary SHb changes as a
possible indication of an ongoing hemolytic process, €.g., Heinz body formation. Indeed, PAPP
has been reported to be hemolytic in large doses, i.e., doses large enough to result in greater than
40-50% MHDb (Beutler and Mikus, 1961; Paulet ef al., 1963). Although it is not known whether
PAPP or the other MHb-forming compounds used presently are in fact hemolytic, an explanation
for observed temporary SHb elevation based on some form of a hemolytic process cannot be
ruled out. It must be pointed out, however, that (a) methemoglobinemia per se does not result in
hemolysis (Beutler, 1969), (b) other MHb-forming compounds, such as NaNO,, are not
hemolytic at doses producing comparable MHb levels as those doses of PAPP which do promote
hemolysis (Beutler and Mikus, 1961), and (c) considering the high levels of MHDb reported in
those studies in which hemolysis was observed, it is likely that at least at those doses of the
compounds which produced low to moderate MHb levels, hemolysis would be minimal, if
present at all. Further clarification of this issue is warranted.

By itself, methemoglobinemia can be effective against CN, but logical and practical steps
may be taken to counter certain limitations and to enhance the likelihood of a favorable outcome
following CN toxicity. For example, though interest in induced MHb as a means to counter CN
toxicity continues, it is often cautioned that the induction of methemoglobinemia may itself be
harmful due to a compromised ability of blood to transport oxygen (Bright, 1987). Chemically
induced methemoglobinemia, if unmonitored, can indeed place the subject in a potentially life-
threatening situation. However, careful monitoring of MHDb status can minimize the possibility
of attaining dangerous MHb levels (ATSDR, 1993). The goal of this study was to identify MHb-
forming compounds which result in the lowest protective levels of MHb against potential CN
exposure, estimated to be 10-15% (Frankenberg, 1982; Bright, 1987; Canfield ef al., 1987;
D'Mello, 1987). Research using animals as well as humans suggests that it is unlikely these
MHb levels would result in significant physiological, hematological or behavioral impairment
(Tepperman et al., 1946; Paulet et al., 1963; Rockwood ef al., 1992). In addition, this estimate
for an optimal MHb range takes into account not only actual protection against CN, but also the
presence/absence of side-effects associated with methemoglobinemia and/or the specific
characteristics of the individual MHb former.

It was recognized early that methemoglobinemia is a condition which provides a
pharmacological scavenger for CN and is not a means to biotransform CN to a less toxic form.
That is, MHb-bound CN is not deactivated but, rather, is rendered ineffective due to its strong
affinity for the MHb molecule. However, once the MHb molecule is reduced to hemoglobin, the
CN can become unbound, and can jeopardize oxygen utilization. Therefore, combinations of
strategies (i.e., MHb-former, followed by a sulfur donor, such as sodium thiosulfate) are
recommended as most effective (Chen et al., 1935; Chen and Rose, 1952).

This study characterizes time-, dose- and route-dependent hematologic changes of three
MHDb formers known to be highly efficacious against CN toxicity. Our data suggest that the
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more lipophilic compounds have a longer time course of action. Furthermore, the relative
inability of PAHP and PAOP to become hematologically active after im injections deserves
further attention, as there is apparent drug sequestration or other means by which these drugs are
not readily available when administered via this route. Overall, information from this study
should further aid in the rational development of these or similar compounds as possible
therapeutic or prophylactic anti-CN drugs available for medical and/or military application.
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TABLE 1. Experimental compounds and doses.

COMPOUND VEHICLE® DOSE (mg/kg)"
PAPP 5% EtOH/PEG 200 9.4,11.7, 14.1, 18.8, 37.5
PAHP 5% EtOH/PEG 200 15.6,31.2, 62.5, 125.0
PAOP PEG 200 30.0, 45.0, 52.5, 60.0, 90.0

NaNO;* SALINE 100

“Groups of animals which received vehicle only served as negative controls.

b See text for dose selection rationale.

 Animals receiving NaNO, served as positive controls.




TABLE 2. Summarized effects of each MHb former on eight blood parameters as
a function of drug and route of administration. Relative to control values, 1
indicates a significant increase, | indicates a significant decrease, and - indicates
no change. All significant changes were dose-dependent (see Figures and Text
for additional details).

PARAMETER | MHb | SHb | HbO, | O,CT | SAT | RHb

>

COMPOUND M|IP | IM|IP|{IM|IP {IM|[IP |IM]|IP |IM| IP
v

PAPP SRR NN NN
PAHP RN R RN
PAOP ' IO N A A I A O T O I
NaNoO, bl e fu eyl
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TABLE 3. Summary of statistical analyses for PAPP.
S=Significant; NS=Not Significant; T=Time; D=Dose
(These designations are applicable to Tables 3-6.)

M 1P
MHb DOSE: S DOSE: S
TXD: S TXD: S
SHb DOSE: S DOSE: S
TXD: S TXD: S
HbO, DOSE: S DOSE: S
TXD: S TXD: S
0,CT DOSE: S DOSE: S
TXD: S TXD: S
RHb DOSE: S DOSE: S
TXD: S TXD: S
SAT DOSE: S DOSE: S
TXD: S TXD: S
HbCO DOSE: NS DOSE: NS
TXD: NS TXD: S
O,CAP DOSE: S DOSE: S
TXD: S TXD: S
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TABLE 4. Summary of statistical analyses for NaNO,.

M P
MHb DOSE: S DOSE: S
TXD: S TXD: S
SHb DOSE: S DOSE: S
TXD: S TXD: S
HbO, DOSE: S DOSE: S
TXD: S TXD: S
O,CT DOSE: S DOSE: S
TXD: S TXD: S
RHb DOSE: S DOSE: S
TXD: S TXD: S
SAT DOSE: NS DOSE: S
TXD: S TXD: S
HbCO DOSE: NS DOSE: NS
TXD: NS TXD: S
O,CAP DOSE: S DOSE: S
TXD: S TXD: S
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TABLE 5. Summary of statistical analyses for PAHP.

M 1P
MHb DOSE: S DOSE: S
TXD: S TXD: S
SHb DOSE: S DOSE: S
TXD: NS TXD: S
HbO, DOSE: NS DOSE: S
TXD: NS TXD: S
0,CT DOSE: NS DOSE: S
TXD: NS TXD: S
RHb DOSE: NS DOSE: S
TXD: NS TXD: S
SAT DOSE: NS DOSE: S
TXD: NS TXD: S
HbCO DOSE: NS DOSE: NS
TXD: NS TXD: NS
0O,CAP DOSE: S DOSE: S
TXD: NS TXD: S
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TABLE 6. Summary of statistical analyses for PAOP.

M IP
MHb DOSE: NS DOSE: S
TXD: S TXD: S
SHb DOSE: NS DOSE: S
TXD: NS TXD: S
HbO, DOSE: NS DOSE: S
TXD: NS TXD: S
O,CT DOSE: NS DOSE: S
TXD: NS TXD: S
RHb DOSE: NS DOSE: S
TXD: NS TXD: S
SAT DOSE: NS DOSE: S
TXD: NS TXD: NS
HbCO DOSE: NS DOSE: NS
TXD: NS TXD: NS
0,CAP DOSE: NS DOSE: S
TXD: S TXD: S
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FIGURE CAPTIONS

Chemical structures of the MHb-forming phenones PAPP, PAHP and PAOP.
MHDb and SHb levels in mice treated with PAPP, as a function of time, dose
and route of adminstration.

MHb and SHDb levels in mice treated with NaNO,, as a function of time and
route of adminstration.

HbO, and O,CT levels in mice treated with PAPP, as a function of time,
dose and route of administration.

HbO, and O,CT levels in mice treated with NaNO,, as a function of time
and route of administration.

RHD and SAT levels in mice treated with PAPP, as a function of time, dose
and route of adminsitration.

RHD and SAT levels in mice treated with NaNO,, as a function of time and
route of administration.

MHb and SHb levels in mice treated with PAHP, as a function of time, dose
and route of administration.

MHb and SHb levels in mice treated with PAOP, as a function of time, dose
and route of administration.

HbO, and O,CT levels in mice treated with PAHP, as a function of time, dose
and route of administration.

HbO, and O,CT levels in mice treated with PAOP, as a function of time, dose
and route of administration.

RHD and SAT levels in mice treated with PAHP, as a function of time, dose
and route of administration.

RHD and SAT levels in mice treated with PAOP, as a function of time, dose
and route of administration.

HbCO and O,CAP levels in mice treated with PAPP, as a function of time,
dose and route of administration.

HbCO and O,CAP levels in mice treated with NaNO,, as a function of time,
dose and route of administration.

HbCO and O,CAP levels in mice treated with PAHP, as a function of time,
dose and route of administration.

HbCO and O,CAP levels in mice treated with PAOP, as a function of time,
dose and route of administration.
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